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QoS Routing in Networks with Uncertain Parameters

Dean H. LorenzStudent Member, IEEEANd Ariel Orda,Senior Member, IEEE

Abstract—We consider the problem of routing connections with  single entity in the network cannot be expected to have detailed
quality of service (QoS) requirements across networks when the and instantaneous access to all nodes and links. Routing must
information available for making routing decisions is inaccurate. therefore rely on partial or approximate information and still
Such uncertainty about the actual state of a network component .
arises naturally in a number of different environments. The goal meet the Q(_)S demands. Amo”g the various QoS parameters,
of the route selection process is then to identify a path that the two major ones are bandwidth and end-to-end delay. In
is most likely to satisfy the QoS requirements. For end-to-end the presence of inaccuracies, the former was shown to be
delay guarantees, this problem is intractable. However, we show polynomially solvable, while the latter poses major obstacles,
that by decomposing the end-to-end constraint into local delay such as computational intractability [5].

constraints, efficient and tractable solutions can be established. o del of taint bability distributi
Moreover, we argue that such decomposition better reflects the ur model of uncertainty assumes a probability distribution

interoperability between the routing and reservation phases. for each link that represents a tradeoff between the QoS

We first consider the simpler problem of decomposing the guarantees demanded from the link and the probability that
end-to-end constraint into local constraints for a given path. the link can meet those demands. This tradeoff is modeled
We show that, for general distributions, this problem is also by link costs, which are increasing functions of the QoS

intractable. Nonetheless, by defining a certain class of probability . ts. In the f K of i tainty. th
distributions, which includes typical distributions, and restricting requirements. In the framework of parameter uncertainty, the

ourselves to that class, we are able to establish efficient and exact COSt” corresponds to the probability of failure, i.e., not being
solutions. We then consider the general problem of combined able to meet the requirements. However, it is important to

paltht_optimization and delay decomposition and present efficient note that our results hold for a more general case in which the
solutions. : A H 1
Our findings are applicable also to a broader problem of costs do not necessarily orlglnate from u.ncertalnty. Th? routing
finding a path that meets QoS requirements at minimal cost, problem is then to estabh;h a connection that satisfies some
where the cost of each link is some general increasing function of Q0S requirements, at a minimal cost, where the cost function
the QoS requirements from the link. associated with each link increases with the QoS required from
Index Terms—Delay, metric inaccuracy, networks, QoS, QoS- it. For s.implicity, we will foc.us on the uncertainty perspective.
dependent costs, routing’ t0p0|ogy aggregation_ In thIS paper, we COI’]SIdeI‘ end-to-end delay gual‘antees.
We explore the impact of inaccurate network information
on the QoS routing process, identify useful and problematic
. INTRODUCTION properties in this process, and present efficient solutions to the
ROADBAND integrated services networks are expectedarious related problems.
to support multiple and diverse applications, with various We proceed to discuss the possible origins of uncertainty in
quality of service (QoS) requirements. Accordingly, a kegetwork parameters.
issue in the design of broadband architectures is how to
provide the resources in order to meet the requirements of

each connection. The establishment of efficient QoS routing o ] )
schemes is, undoubtedly, one of the major building blocks in 1) Network Dynamics:Many parameters associated with

such architectures. Indeed, QoS routing has been the subfiflgy requirements are affected by temporal conditions, such
of several studies and proposals (see, e.g., [2], [4], [5], [ s congestion. Parameters advgrtlsed by a link might be ba§ed,
[10], and references therein). It has been recognized that {RE 8xample, on average behavior or on worst-case behavior.
establishment of an efficient QoS routing scheme poses sevifafither case, the advertised parameters are not accurate.
complex challenges. One of the major challenges results frdfiS inaccuracy can be eliminated by rapidly advertising the
the inherent uncertainty of the information available to thgHrrent, updated, accurate conditions. Unfortunately, this is
QoS routing process. impractical when the netwprk is highly dynamic and changes
As networks grow in size and complexity, full knowledge® frequent. Thus,'advertlseq 'valu.es.sho.uld be cor}3|dereql as
on network parameters is typically unavailable. Indeed, ealAcertain. The precise propat_mllty distributions associated with
each value depends anpriori knowledge on the frequency
Manuscript received May 1, 1998; revised September 30, 1998; approvefi updates and the dynamics of the network.
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hierarchical process that aggregates information as the netwsokutions for specific cases. This paper extends that framework
gets more and more remote. However, the aggregation procasd achieves optimal andoptimal solutions for the general
inherently decreases the accuracy of the information andse.
introduces uncertainty. The semantics of the available param-The rest of the paper is organized as follows. In Section I,
eters depend on the aggregation method used. For instameejntroduce terminology and definitions and present different
we could consider the parameters as averages or as hesiants of the problem. In Section Ill, we consider the
or worst cases. Some aggregation schemes may advertisgngpler problem of decomposing the end-to-end constraint into
possible range for each parameter, which may be considelechl constraints for aiven path.We show that, for general
as uniformly distributed within this range. Other schemes maljstributions, this problem is also intractable. Nonetheless, by
imply different probability distributions and publish specifidefining a class of probability distributions, which posses a
parameters associated with these distributions, such as meamain convexity property, and restricting ourselves to that
and variance. class, we are able to establish efficient and exact solutions.
3) Hidden Information: Interconnected networks may in-Moreover, we show that typical distributions would belong to
clude private networks that hide some or all of their inforthat class. We then proceed to consider the combined problem
mation. One reason for this could be hiding the networkaf path selection and constraint decomposition. As a first step,
internal proprietary mechanisms. Typically, such networke Section IV we discuss theestricted shortest patproblem,
would advertise information that contains inaccuracies @rich is closely related to our problem. Then, in Section V,
advertise ranges for specific parameters. We can interpret this present a solution to the QoS routing problem, under the
information as probability distributions, based on parametesissumption that the end-to-end delay is partitioned along the
supplied by these networks, or by prior experience. optimal path. In Section VI, we present an efficierptimal
A second possible cause for hidden information in sulapproximation scheme. Conclusions are presented in Section
networks is to maintain some degree of freedom in interndll. Due to space limits, many of the proofs and technical
routing. For each request, the subnetwork is free to choose alefails are omitted from this version and can be found in [6].
internal route that satisfies the QoS requirements. The network
may advertise the likelihood of path availability for each QoS
requirement, in which case the QoS parameters should be IIl. MODEL AND PROBLEMS

tre:te: as rqndomcvzlirlalblgs..E he " nod q This section introduces the notations and definitions that
) Approximate Calculation:Even the “exact” node and _ .\ seq throughout the paper.

link parameters cannot be assumed to be truly accuraterpa network topology is known and is represented by a

Typically, they are.just approximations of the real param itaph G(V, E). There is a single source and a single
ters and values, since they are based on elaborated mo Einationt, and we need to establish a connection with

thellt clanr(njot fully represent the |r|1|tr|cacy ofbthe gewces._ T ﬁs requirements, namely end-to-end delay requirements. We
calculated parameters are usually upper bounds (as in hote by|p| the number of links in a patp.
or incorporate some inaccurate assumptions. Approximate

calculation is hence yet another source of uncertainty in the
advertised parameters. A. Uncertain Parameters

The uncertainty lies in the delay parameter of the links.
B. Goals of the Paper For each linki € £, we are given a functiorf;(d) which is
We probability that the link can guarantee a delay boudd
5 denote byr(p) the probability that an end-to-end delay
pémdD can be guaranteed on the pagthWe shall assume
at the functions{ f;(d) };cr are known and that the delays

Our overall goal is to investigate the impact of uncertai
parameters on routing with end-to-end delay guarantees.
assume a framework where the delay guarantees that
advertised by each link are random variables with kno .
distributions. These variables represent the probability thaf'% independent. . . .
link can satisfy a QoS delay requirement. We further assume hese parameters may be (partially) advertised as in any

that this knowledge is available to us, and that the delays k-state T°““”9 sqheme. The distributions can .be ejthgr an
the links are independehtA source node is presented with 6{nterpretauonof available parameters as probability distribu-

request to establish a new connection that meets given endpt%r-‘S ortmay bﬁ deduct:ed from prior experle'réce (t)r'? mzlolfl
end delay requirements. The source node seeks a path th&RIMPLoONS. or instance, we may consider the delays as
most likely to satisfy these requirements. uniformly distributed around the advertised value, where the

The basis for this work was laid in [5]. That study pres:ente%iZe of the region 1s determmed by the upd_ate _threshold. The
the framework of a network with uncertain parameters a act mechanisms for obtaining these distributions are out of

solved the QoS routing problem for rate demands and fi e scope of this paper.

delay demands under a rate-based model, as in [9]. It alsc{[\lort]e that even in %IdY”a{Q‘C rlitwgrk the_ functigfﬂs;l) do ted
presented heuristic methods for dealing with end-to-end deIB@ change very rapidly, rather, the dynamics are incorporate

requirements in models that are not rate-based, and optirWthhe probabilities. Hence, using an uncertainty perspective
allows less frequent updates which are a key problem when

1This does not necessarily imply that probability distributions are advertisé’r?ahng with QoS parameters. Also note that, as _“nk pa-
by the nodes; this point is elaborated in Section II-A. rameters reflect the chances of successful connection setup,
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they might vary with the source and possibly with the flow

specification.
0% 1 45% 1

B. Problems definition 0% 5\ 100%2 el

As mentioned, we need to satisfy a given end-to-end delay e
constraint. Observe that we do not seek a shortest path but
rather a path that is most likely to satisfy our delay constraints. 20% 1
This can be formalized as follows. 80% 2

Problem MP—Most Probable PathGiven an end-to-end @
delay constraintD, find a pathp*, such that for every other

pathp, 7p(p*) > 7p(p). ,

It is imp(grta)nt to no(tic)e that problem MP is different fromF'g' 1. Example.
finding the path that is most likely to be shortest (when
consideringd; as a random variable with a distributigfy). It can be easily verified that the probability of satisfying the
Indeed, it is possible that the pajit would unlikely be the end-to-end bound is 0.5 for the left link, 0.2 for the middle
shortest path despite being the most likely to satisfy our delbgk, and 0.54 for the right link. Thus, the solution to problem
constraints. MP is the path through the right link.

After an optimal path is selected, a reservation phase takedf we assume the delay requirement must be later partitioned
place. Usually, this involves decomposing the end-to-end del#jo local constraints then we must solve problem OP for each
constraints into local constraints, each imposed on a link alopgth. The optimal partition on the right path is (1, 2), which
the path. Such a decomposition allows evaluating the del@ads to a probability of success of 0.45. The same partition is
requirements in terms of link resources (e.g., rate [9]). Thusptimal for the left path also, leading to a (higher) probability
the total delay guarante® should be partitioned into a set ofof success of 0.5. The optimal partition for the middle path

guaranteesSp(p) = {D; }iep such thatt;ep, D; = D. is (2, 1) which has a probability of success of only 0.2. Note

Definition 1: Given a pathp and a set of link delay that the naive “equal-partition” solution to problem OP (1.5,
requirementsSp(p) = {D:}icp, define 1.5) leads to a very poor probability of success of 0.1 on the
left path and even worse on the other paths. Next, observe

7({Di}icp) =Pr{d; < D; Viep)l= Hfz(Dz)- that themiddle path has the shortest expected delay yet it is

icp a bad choice for both problems MP and OP-MP. Finally, note

that the solution to problem OP-MP in this case is the left
Different partitions may lead to different probabilities ofpath, while the solution to problem MP, i.e., the right path, is
success, and, as we shall see, finding the best partition (fasignificantly inferior.
given path) is a difficult problem.
Problem OP—Optimal Partition:Given a pathp and a D. Practical Considerations
delay D, find a partitions7, (p) :.{Dl hiep, SE(SH(p)) 2 In practice, there are further restrictions to the above prob-
©(Sp(p)), for every (other) partitiorSp(p) = {D:}iep. ems
The assumption that the delay is partitioned imposes a new., s - .
L . One such restriction is on the minimal probability of suc-
restriction on the solution of problem MP. It also changes the

AT : : : i.e. mins [ h ’
probability space, since each event is now determined by t eeSS’ Le.n(Sp(p)) > p inother words, we do not

: . . consider paths with a probability of success smaller than.
?ﬁ:g\t,lvosn to problem OP. This leads to a revised problem Fis imposes a restriction on the minimum probability for each
: . . . link f;(d) > po.2 Sincef;(d) is monotonic increasing, we get a
I;r?blen:j (()jPI—MP—O?tlma%"yrpgrtmoni? ll/IP(?lvfen AN restriction on the minimal dela# allocated to each link. This
g?he-ro-zr[]h e(?/* c(:og;rzi ,(Sl*n( ‘;‘)pa P SLTOrevery \eans thatf;(#;) > po implies D; > ¢, for eachl € p. Note
pathp, mop(P7)) = m(opiP)). that this restriction always holds, ag > 0. Accordingly, in

Problem OF.)'M.P IS |d_e_nt|cal to problem MP except th‘.”“ t.htre"le following we shall assume that for every lihkwe have
delay constraint is partitioned. As argued above, part|t|0n|r(1;‘g ositive minimal delay,. Moreover, we shall assume that
the delay is a requirement that often rises from the actual WE}P ) '

in which delav quarantees are requested and provided ere is a nonzero probabilipy, such that for every link € £
y 9 q P * we havefi(t;) > po, that is, the probability that the link can

guarantee a delay af is positive.

C. Example A second restriction is regarding the granularity of the delay
We llustrate the problems through the following examvalues. In practice, the delays cannot be broken into arbitrarily
ple. Consider the network of Fig. 1, where the probabilitgmall pieces. We denote the smallest possible change in delay
distribution of each link is listed. by é, i.e., ¢ is the resolution we have for the delay. The smaller

There is a single sourcd and a single destinatio6. All ¢ is, the more accurate the solution is, but generally at the cost
p?\t_hi g? tErouhng aindkthe.li;)gtlng pl’doblem IS mer;aly choosing 2Typically, po is greater tharp,;,, since the probability of a path is
whic .0 the three links will be used to traverse FQ¢TtO B. determined by all its links. For instance Aiflinks havepo as their probability
We will assume that the end-to-end delay bound is 3. of success then we must hayg > §/Pmin-
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of higher complexity in order to solve the problem (or eveguarantees. A QoS routing mechanism for such a network
just to represent the solution). We shall assume, without losisould choose a path that can satisfy the end-to-end delay
of generality, thatt = 1, and that all delaygd;, #;, D;, D) requirements at minimal cost.

are integers. Hence, the cost functiory(d;) = —log fi(d;) can be
viewed in a broader scope than uncertainty. In other words, all
E. Relation to Shortest Path Algorithms the previously defined problems can be redefined in terms of

. . cost alone without restricting ourselves to cost functions that
The probability of success on a path is a product of t

b : L . iginate from parameter uncertainty. We only require that the
probability of success on all links. This is readily transforme&iOst is decreasing with the delay. This requirement is very
to a usual sum by defining a proper cost function. Given

8 ble, si hould pay less if t S
probability distributionf;(d;), we define a corresponding cost:)oisnodna e, since we should pay less if we get a worse Qo

function c;(d;) = —log fi(dy). The cost associated with each Obviously, such costs provide important tools for resource

link is positive and decreases as the delay allocated to the I-\Wénagement For instance, one may associate higher costs
increases. ' ’

The standard shortest path bl q " with congested links in order to direct traffic away from
€ standard shortest path probiem (and consequen Ytfi&m. in other words, less cost may reflaetworkoptimality
corresponding algorithms) has aptimal substructurgrop-

v M1 the shortest path bet " " ¢ _rather tharuseroptimality 2 Our results are applicable for this
ery. [ .]' € shortest pa etween two verlices contalllynera) cost model as well as for the uncertainty model.
within it other shortest paths. This property is a hallmark

the applicability of bothdynamic-programmingand greedy
methods. . [l. SOLUTION TO PROBLEM OP

Specifically, the above property means thats if~> « ~~ : ) .

v ~ ¢ is a shortest path froms to ¢, thenu ~ v is a In this section we explore problem OP, and establish an
shortest path from to v. Thanks to this property, one does no?f“ficient solution for a wide class of probability distributions.
have to check all possible paths, and the complexity redudgdue to space Iimits, in this version we just outling the results,
from exponential growth to polynomial. Unfortunately, thisand th? reader is referred :10 [6] for the full d:tans. h h
propertydoes notold in our framework, making it impossible Prop em OP can be shown to be NP hard, through a
to apply standard shortest path algorithms to our problerﬁg.du_cu_on to the O—Jknapsack_ problentl]. _Ho_we\{er, by
This is illustrated through the example of Fig. 1 (Section ”_Cj'_estrlctl_ng ourselv_es to a certain cl_ass of distributions, exact
Suppose we wish to solve problem MP through a subproblefii’d €fficient solutions can be obtained.

i.e., the best path from to B. The left link is best if the delay [ Irst: we define a family of probability distributions for
boundD 4, on the segmenti is less than 2 and the middleWhich we can present efficient solutions. This family consists
link is best otherwise. Recall, however, that ttght link is of dist_ri_b_utions with a certain convexity property.

the optimal solution to problem MP, yet it is not optimal for Definition 2: For ¢,(d;) = —log fl(di)’ let & be the set of
any choice of D.1. Thus, problem MP does not posses afroPability functionsf(d), s.t. Ac(d) = ¢(d) — ¢(d — 1) is
optimal substructure property. (St”Ct.ly) monotonic mcreﬁsmg_wm. . .

Partitioning the delay, however, introduces a similar usefyl ¥ includes all probability distributions with convex cost
property to problem OP-MP, as follows: i~ 1 ~» v ~ ¢ unctions e(d). In [6] we investigate to what extent the
is a solution of problem OP-MP with total deldy, and it is assgmptlonfl € v I|m|ts_the choice off;. We proceed to
partitioned into link delay constraints, such tlitis allocated outlme_the main conclusions. Lo
to the subpathu ~ v, thenwu - v, with the same delay It is |mportant to note that the assumption is n_eeded only
partitioning, is an optimal solution for total delay’ from » " the region(t;, D). In other words, we are only interested

to v. This enables us in certain circumstances to solve probldfht"€ regionpo < fi(d). Typically, the minimal probability
OP-MP by greedy and dynamic programming methods. Goiy SUCCeSPo on each link should be close to 1 to allow a
back to the example, we see that the left link is an optimEfsonable probability of success for the whole path.
subpath for the delay bounB .z = 1, which is indeed the Proposition 1: If a probability distributionf;(d) is concave,

optimal delay partition on the segments. then f; E gjl distribution i if its density .
The solution of problem OP may also introduce som,eApro ability distribution is concave if its density function

optimal substructure property. This is especially true if we monﬁtonlc _delcreasmg. Thh's IS m_Je for mang/ d|str|but|0nsi
use a predefined (nonoptimal) solution of problem OP. ng,ve_nbt _atp(? IS large er;oug ' F(r)]r _mstance, ; eh exponenlua
instance, partitioning the delay with equal probabilities fof!Stribution is concave for any choice g, and the norma

all links allows us to use standard shortest path solutions, 4igtribution is concave fop, > 0.5. In [6], we show that the
shown in [5]. uniform distribution also belongs t&.

Next, we show that any optimal partition is aquilibrium
point, in the sense that moving a single delay unit from one
link to another does not improve the overall probability of

Guaranteeing QoS requires allocating resources along thecess. The following lemma states this property in terms of
path, hence the cost of providing such QoS guarantees corre-
sponds to the cost of reserving such resources. AccordingMNote that the network perspective can be incorporated within the uncer-
each link may advertise the costs of providing various delayinty model by “distorting” the distributions.

F. General Costs
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GREEDY-OP ({fl}zep ,D): BINARY-SEARCH-OP ({fi },cp , D):
1 letSpo(p) = {ti}yep.ie. D) =t1 VIEDP 1 ileeptl > D then fail
2 9D =37 DP > D then fail*

) . D‘_D_ZIEPtl’ f),(—t,+%
3 while D71 =37 DT < D:

L «+ minjep Ay ([),) , H+ 0

repeat
@ B4

if Dp (o) = D then return D; = Dy (a) VICp
if Dp (@) > Dthen H «— acelse L + a

D! = pi~t ifl# 1
. A 1. ’
Spi (p) & { D} =Di7' £ 1 otherwise;

NN R W N

where I* is determined such that 7 (Sp: (p)) is maximal

Fig. 3. Algorithm BNARY-SEARCH-OP.

<1t is impossible to satisfy the minimum delay for each link.

Fig. 2. Algorithm Greeby-OP. It is possible to solve problem OP by extractingdirectly
from the equatiorD = Dy («). This can be done numerically
the “cost” functions{c; }1cp, as defined in Section II-E, angin the gener_al case, ar_1d analytipally for c_ertain distributions.
the partition { Dy }icp. Qne such distribution is the uniform, which we proceed to
Lemma 1:If {D;}icp is an optimal solution to problem diSCUss.
OP, then for any, | € p we haveAc.(D.) < Aq(D; + 1). . o
Proof: Otherwise we can reduce the total cost by addirfy Uniform Distribution

1 to D, at the expense ab).. The cost will reduce because It can be verified that uniform distributions belong a
(D) +ce(De)) —(er(Di+1)+ce(De —1))) = Ace(D.)—  We proceed to show that we can get an implicit expression

Acg(Dy+1). B for the optimal partitionD,(«).
Lemma 1 leads to an important corollary. Theorem 3:Let f;(d) be uniform, f; = U(¢, t; + &), i.e.,
Corollary 1: If {D;}¢p is an optimal solution to problem 0 it 0<d<t
OP then there is a threshold, s.t. for alll € p we have 1’
AC[(D[) <a<L AC[(D[ + 1) fi= —(d— tl), if 4<d<t+6
Proof: Set &« = maxicp Ac(D;), and the result b _
follows. n L, it d>ti+6

Focusing on cost functions i, Ac; is monotonic increas- for every I € p. Let 7 be a delay, S't'ZlEp t +
ing hencex determinesD;. We denote the delay allocated tozlEp min (7, §) = D.
the link ! for a specificac by D; (), and from the definition of  Then, 5, = {D; = t; + min (7, &) hiep IS a solution to
o we haveDi(a) = sup{d: Ac¢;(d) < a}. The corresponding problem OP.

delay allocated to the whole path i3, (a) = 3=, Di(e). It Proof: The derivatived;(d) is given by
can be verified that for distributions i Sp(p) = {Di(«)}

is a solution to problem OP fob = Dy (). d 0, . it 0<d<t

As a consequence of the above result, we can employ a ¢(d) = _fi(d) _ T i h<d<ti+6
greedyscheme (Fig. 2). Specifically, we distribute the total fu(d) d—t
delay piece by piece, giving each piece to the link where 0, it t+o<d

it most improves the probability of success. Such a strateg¥nce, forx = 1/ we getD;(1/7) = sup{d: d(d) < 1/7} =
involves D iterations, in each of which we select the optima}, 4 iy (r, ). By the assumption on, we have forx = 7~
link and add 1 to its allocated delay.

Theorem 1:1f f; € ¥ foralll € p, then algorithm ®EEDY- Dp(a) = ZDz(l/T) = th + Z min (7, &) = D.
OP solves problem OP withi®(D log |p|) steps. lep lep lep

This result can be further improved by searching for the. _
threshold« , i.e., we find ana for which D,(«) = D. r§|ncefl(d) € ¥ andDy(a) = D, we have that
We assume that the cost functions have bounded variations 1 .
(|Ac| < A), therefore we must have € (—A, 0). We may Sp = {Dl(a) N Dl(?) = tu -+ min(r, 61)}
also assunfethat changes i;(«) are of the same magnitude
as changes im, therefore a change of 1 ib,(«) requires
a change ofip| ! in «.

This means that theffectivesize of our search space is o . . .
order O(|p|A). Dy(c) is a monotonic function, thus we can Theorem 3 Ieads to an alternative algo_rlthm for solving
employ a binary search witt(log(|p|4)) iterations (Fig. 3). problem OP. The idea is to seek thestated in the theorem.

Computing D, () requiresO([p), hence the search can b "om the proof of Theorem @he calculation ot/(d)), we can
implemented inO(|p| log(|p|A)) realize how we should partition the delay: all links should get

Theorem 2:1f f; € W for all I € p, then algorithm BVARY - exactly the same addition to their minimal requirement, i.e.,

: ) D; — ¢, is constant. We only have to compensate for the fact
SEARCH-OP solves problem OP i®(|p| 1 A)). L= . ) .
P ([p| log([p[4)) that this addition might be greater thén All excess allocation

“4See [6] for a more detailed discussion. beyondé; can be evenly distributed among the other links.

lep

is a solution to problem OP. [ |
Note that, sincey(d) is differentiable, we may apply the
previous lemmas om;(d) rather thanAc(d).
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- among all possibilities for; and the corresponding;(d;).
?YSS)T)C;ROEJP (gi‘i E) {di athier: D) In the worst case, this would mean that at each iteratign
2 5(015)4_0 0 < m < n—1, we recalculateC(n, u, v) according to
3 O(w) «{u:(u,v)€E}, 0(v,0) «NIL Vo eV C(m, u) + ¢(y,)(n —m). This implies a total complexity of
5 repeat until n > D ' i i .
6 forall{ = (u,v) € E do A better bound can be achieved for discrete probability
; C("1+ dy,u,v) ¢ Cn,u) + o distributions. Assume there is a bousd such that, for each
o e do link I € E, there are no more tha# possible delays, that
10 C (n,v) « minC (n,u,v)¢ is, fi(d;) (and ¢;(d;)) are discrete functions with no more
O(v) . . . .
1 8 (n,v) < arg min C (n, u,v) than K points. Under this assumption, calculatiéi¢n, «, v)
o) requires finding a minimum amonig possibilities and can be
@For all existing C (n,u, v). done inO(K), leading to a total complexity o (DK |E|).
Alternately, we could replace each linkwith a set of K
Fig. 4. Algorithm DrnAmiC-RSP. links {lk}}ngK, each with a specific delag; ;. We then get

a graphG with |E| = K|E|, and the related complexity is
Such an algorithm was presented in [5], without the abo@$ain O(D|E|) = O(DK|E]).
proof of optimality. The complexity i€(|p|). Yet a more careful analysis of problem OP-MP enables one
to considerably reduce the complexity of the solution, for the
wide class of (both discrete and continuous) distributions in

) ) . ) W. This is shown in the next section.
In this section, we review the well-known restricted shortest

path problem and a (nonstandard) variant of its dynamic
programming solution. We then discuss the relation between V. PROBLEM OP-MP
this problem and problem OP-MP. These observations shall
help us solve problem OP-MP, in the next section.

We begin by formally presenting the problem.

Problem RSP—Restricted Shortest Pathiven a network
G(V, E), a delay and a cost for each lidk;, ¢;}icr, and a
maximal delayD, find a pathp®, such that}>,. . di < D

IV. RESTRICTED SHORTEST PATH PROBLEM

In this section, we solve problem OP-MP using dynamic
programming methods. The solution uses a modification of
algorithm DvNAMIC-RSP.

Suppose we have a data structure that contains «, v),
for all 0 < n < D. Clearly, this structure must be updatéd
~ -~ times, once for each calculation 6{m, u), 0 <m < D —1.
aNd> e, @1 S 3 yep iy fOr any other pathp that safisfies g i genote byC(™) (n, u, v) the value ofC(n, u, v) after
the restrlc'uonzlEp d; < D. jteration m

IIDrQbIe*rJn RiP |stP—h§rd [3] yet has a_lp_)ﬁeudopplyn%mla For specificn. and m, wheren > m, C(m, u) may affect
solution based on dynamic programming. The version of t _u, v), only if we allocate a delay ofn — m) to the link

algorithm presented in Fig. 4 is not standard, but it simplifie@nv) In this case, we defing,(n, u, v) to be the calculated
our subsequent discussion. At iteratian we calculate the C(;z w v), that is C (n, u, v) ’: é(ﬂ’l ) + Ca, (0 —m)

optimal path froms to each vertex, with a delay limit ofn, We also define,,(n, u, v) = oo for n < m.
and store its cos€(n, v). The costC(n, u, v) is calculated | " .1 iteration. we update, for all, ™) (n, u, v) =
similarly to C(n, v), except that the last link on the optimal . A {Cm=D(n, x, U’)7 Conlm, 1, U’)}_ No'Ee that C’,(n: w, v)
path tow is assumed to beu, v). At each iteration, after We .onnot change after iteration and for eachn, there is some
haveC(n, u) for each vertex:, we findC(n + dg,, .y, u, v) 0 < m < n for which C(n, u, v) = Cm(n, u, v). We will
for all outgoing links fromu. denote thism by base(n u’v)" B
Finding the opti.mal path involves calculatinglig,uc We are now ready to7 p;esent algorithnyIBMIC -OP-MP
(, u, v) and choosing thearent(n, v) of v on the optimal ki '5) The algorithm employs a data structure that holds
path. We adq aloofw, v) to each vertex \_N'th a_d_elay of 1 andbase(n, u, v) and supports three operationst—initialize
a Zero Cost, i.ed,, ) = 1, ¢, ) = 0. This addition exempts o i cure; BpATE—update the structure at each iteration;
us ffom handling the special case whé(a, .U) =C(n=Lv). gpq GeT—get the value obase(n, u, v) for a specificn. Note
Sn_qce| Uncy O(v)] = |E], calculatlmgmm@(,v) C(”.’ Y 1.}) that for each vertex we need to hold not only its parent on the
requires a total ofD(|E|) for all vertices. At each iteration, optimal path, but also the delay allocated to the last hop.
we go over all links inO(_|E|_), and the number of iterations " . algo;ithm is essentially the same as algorithm
is D. Thus, the complexity i)(D|E]). DyNAMIC-RSP. The main difference is in calculating
o C(n, u, v). After each calculation of’(n, u), we use the
A. Application to Problem OP-MP UPDATE procedure to update our data structure. At lines 11-13,
Problem OP-MP can be shown to be NP-hard [6], essentiallie extract the value dlase(n, u, v) from our data structure
through a reduction to problem RSP. The crucial differen@nd calculate(n, u, v). We usebase(n, u, v) at Line 17 to
between problems RSP and OP-MP is that we do not has&culate the delay allocated to the last hop and then store this
a single pair(d;, ¢;) for each linkl = (u, v). Rather, we delay with the parent at Line 18.
have a complete function,(d;). This means that we cannot With an efficient implementation dfasce(n, u, v), the time
calculate C(n, u, v) in O(1). We must find the minimal complexity of algorithm YNAMIC-OP-MP isO(|E|D log D).
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DYNAMIC-OP-MP (G (V, E) , {fi},c . D): INIT (u,v):
1 C(0,0) 00 Yv#£s 1 tree = tree(u,v), last = last (u,v)
2 C(0,s)«0 2 last+ 0
3 O« {u:(u,v) €E}, 0(v,0) NL VoeV 3 tree(0] .base < 0
4 foralll = (u,v) € Edo 4 tree(0] .next < D
5 INIT(2, v) 5 tree[D].base + 0
6 n 0 6 tree[D].next « D
7 repeat untit n > D
8 foralll = (u,v) € E do Fig. 6. Procedurenit.
9 UPDATE(n, u, v)
10 néen+tl
11 foralll = (u,v) € ©(v)do
12 base (n,u,v) +GET(n,u,v) ,
13 € (m,1,2) € Chape(mure) (n21,0) roaE e V)
14 forallv € V do . “ 2 ime_(D,u,v) ’> Ctree[D].base (D, u,v) then return®
15 C(n,u)(—gl(lvr;C(n,u,v) 3 L0 H« D
16 u + arg min C (n,u,v) 4 neD
O(v) S repeat
17 d < n — base(n,u,v) 6 if Cirecln].base (M4, 7) < Cm (n,u,v) then
18 6 (n,v) « (u,d) 7 Len
o 8 else
“For all existing C (n,u, v). 9 tree[n).base «— m
10 tree [n] .next « H
Fig. 5. Algorithm Drnamic-OP-MP. i1 H+n
12 if (H — L) < 1 then return
: 13 n e [4E]
A. Implementing bage, u, v) 14 if tree [L] .next = H then
. . . 15 tree [n] .next «+ H
In the general case, maintaining our data structure requires; ¢ tree [L].next « n
O(D) in each iteration, which results in a total complexity |17 tree [n] .base « tree[L] .base
of O(D?|E|). However, we will show that, for probability 8¢ (m, v) cannot i c( e
.. . . . m,v not improve C (n, u, v) for any n.
distributions that belong t&@, this can be done i®(log D), P Y

reducing the total complexity of algorithmvRAMIC-OP-MP  Eig 7. Procedure Ebare.
to O(|E|D log D).
As described above, at each iteration we perform the update

c(rn)(n7 u, v) = min {c(m—l)(n7 w, ), Con(, 1, U)} Procedure BDATE (Fig. 7) is the core of the algorithm.
The procedure traverses through the search tree, creating
for all n. Since0 < n < D, we needO(D) for the update, new nodes and trimming the tree whenever needed. This pro-
however the next lemma (see the Appendix for proof) showsedure is called at each iteration, aftdn, «) is calculated,

that we can improve upon this for distributionsin for all outgoing links (u, v), from vertexw. The search for
Lemma 2:If fq, . (d) € U, and there exists ang for no is done in therepeatloop, wheren is the currently visited

which €™ (ng, u, v) = Cp(no, u, v), thenC™ (n, u, v) = node and(L, H) is the current interval.

Crm(n, u, v) for all n > ng. Lemma 3: Procedure BDATE updates the tree if?(log D).
Intuitively, Lemma 2 means tha€™~Y(n, u, v) and Proof: We assume the tree is correct before ttrOME

Cm(n, u, v) have at most a single intersection point. At eacéall. At each iteration of theepeatloop (Line 5), we compare

iteration we only need to search for the next intersection pointhat can be achieved from the node’s base (uéiftgse, u))

This can be done, using a binary searchQiflog D). In each Wwith what can be achieved fromn (using C(m, w)). If the

update, we seek the smallest that satisfies the condition of current base is better than, we must havey, > n, hence we

Lemma 2 and selase(n, u, v) < m for all n > ng. should keep searching in the right branch, i.e., in the interval
We implemenbase(n, u, v) through a balanced binary sort(n, H). If m is better, we must have, < n, hence we should

tree. The tree is kept balanced by maintaining a subset okeep searching in the left branch, i.e., in the interia) n).

full tree, that is, each level splits the interval exactly by halfn the latter case, we must also update the base,tand trim

We also maintain an in-order linked list of all “live” nodes inthe tree, i.e., updateextto H. Thus, we have established that

the tree. During the search, we create all the nodes on the path search in the right direction and update the nodes along

leading tong and update the linked list. When, is found we the way correctly.

trim the tree by simply connecting nodg to nodeD. We need to show how we create new nodes. We have an
ProcedureNiT (Fig. 6) performs the initialization. indication thatn is a new node ifL and H are neighbors in
Line 1 just simplifies the notation. Each tree is initializedhe linked list (Line 14). In this case, we insert the nad@

with two nodes. Nodé is needed because each searchnfpr the list and set the default base to the basd.oNote that

begins by checking ifig < D. The initial base value assumeghe new node will be examined (and updated if needed) on

the allocation to the link isD; = D. Node 0 is needed for the nextrepeatiteration.

the beginning of the linked list, that is, our initial base value Each node is updated (and if needed, createdpin)

for each iteration is 0. The variablast is used by Gt and and the number of nodes is bounded By Since the tree

is explained later. is balanced, the search is done(log D) iterations. |
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GET (n,u,v): UNIFORM-OP-MP (G, {fi =U (ti, ts + &) },c, D):
1 tree = tree(u,v), last = last (u,v) 1 sort the links by increasing values of §;
2 iftree[last] .mext < n then last « tree[last] next 2 fori=1t|E|do
3 return tree[last] .base 3 Ec{leE:1<i)
4 T (V) « SHORTEST-PATH(G (V, E) , {t: + 8},c )
Fig. 8. P : - -
ig. 8. Procedure & 5 E {(s,0) : (wv) € B\ E}
_ 6 fsy €U (t(u,v)+T(u)at(u,v) +T(u)+5(u,u)) “
GET shOL_JId_S|mpIy return the valu<_e atee[n] - base, and 7 pi « OP-MP(G (V,EUE) ,{filicpug D)
can be easily implemented by traversing the tre@ftog D). assuming 7 < 8, foralll € E
However, if we save the last returned value between calls, we | 3 choose the best p
can implement &t in O(1) as follows (Fig. 8). 4There may be parallel links.

The value oflast represents the closest intersection point
beforen, and is always smaller tham lastis initialized to 0 Fig- 9. Algorithm WiForm-OP-MP.
by INIT and is updated at each iteration.

We are now ready to calculate the complexity of Algorithnaiarting with § corresponds to several different valuesof
DYNAMIC -OP-MP. ) (D >t > 6) and each HDATE will require more thanO(1).

Theorem 4_1:Algor|thm DYNAMIC-OP-MP solves problem = This problem can be circumnavigated if we assume &,
OP-MP within O(|E|D log D) steps. for all I € E,° in which case the optimal partition becomes

_ Prpof. By Lemmas 2 and 3, we conclude that we ca@D(p) = {t1+7 hicp. This can be implemented using dynamic
_mamtam a data structure fbuse(n, w«, v), that can be updateq programming, by saving for each optimal path, and checking
in O(log D). Clearly, the NT procedure can be done inyj possible values of for each outgoing link frons [6]. Thus,

O(|E|) for all links. Each iteration calls RbATE and GETONCe  ith the above assumption we can solve problem OP-MP in
for each link inO(|E|(log D + 1)). There areD iterations, O(|E|D).

thus we get a total time complexity @®(|F|D log D), as

_ In the following algorithm WiFOrRM-OP-MP (Fig. 9), we
claimed. [ |

relax the (unreasonable) assumption< & for all [ € E.
) o If = > & for some link, then the cost on that link is
B. Uniform Distribution zero (fi(t; + &) = 1); however, we must allocate delay to
Our solution to problem OP-MP uses the fact that the del#lye link. Whenr is already known, we can simply allocate
is partitioned to establish an optimal substructure property,+ min (6;, 7) for the next hop. However, when such a link
which allows the use of dynamic programming. However, i¢ the first link in the path, we must determimne We should
does not make use of the partition stratggy se.lndeed, the consider all possible values for, and in the worst case this
dynamic programming algorithm adds at each iteration a singleuld change the complexity ¥0(|E|D?). To overcome this
link to an optimally partitioned path. It is obvious that the delagroblem, we must make sure that paths do not start with such
allocated to that link may result in a nonoptimal partition olinks.
the whole path. This means that only a specific delay may belf we sort all links by increasing values éf, i.e.,0 = 6 <
allocated to the added link. Thus, we can perform @&pATE ¢1 < -+ < 6|, then we can solve the problef| times,
at each iteration irO(1). where at iteratiorr, we assume,;_; < 7 < §;. For all links
For uniform distributions, we can efficiently solve problenthat haveé; < 6;_1, we setd; = #; + &, with probability 1.
OP and use this result in the solution of OP-MP. By Theoredye can now delete all those links from the graph and add
3, the optimal partition isSp(p) = {t + min(7, &)}iep, their delay to the remaining links. For each remaining link

where 7 is a delay such that (u, v) we add a new link(s, v), which has the samé as
_ (u, v), but with £,y = ¢, ) + T(w), whereT(u) is the

D ti+d min(r, &) = D. delay allocated to the links we removeti(x) is the minimal

tep tep distance (on those links) fromto « w.r.t. (f; + &) and can

The delayr is a common property for all links along thebe computed using a (standard) shortest path algorithm on a
optimal path (with optimal partition). This implies that anygraph consisting of the links we removed.
optimal subpath should be continued only with the same  Theorem 5: Algorithm UNIFORM-OP-MP  solves problem
The initial value ofr is determined by the delay allocated tdP-MP, for uniform distributions, withirO(|E|*(|V| + D))
the first link of each path, hence we must consider all possitsit€eps.
delay allocations for any links outgoing from Proof: Finding T'(V) requiresO(|V||E|).% In the worst
The dynamic programming algorithm inspects all possibkase, the number of links is doubled, hence the complexity
delay allocations to any link outgoing from, hence all of finding each optimal path in Line 7 i©(|£|D). Thus,
possible values ofr are considered. We might expect ghe complexity of each iteration i®(|E|(|]V] + D)). We
complexity of O(|E|D) for the solution, however, this is notperform |E| such iterations, hence the total complexity is
the case. The problem arises whers greater thars for a O(|E*([V| + D)). ]
link outgoing froms. In any optimal solution, the maximal
delay allocated to a link i$, hence an allocation of may  Swe shall relax this assumption later.
correspond to different choices of This means that a path 8For example, using the Bellman—Ford algorithm.



776 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 6, DECEMBER 1998

In practice, it is possible to take advantage of the limits ome assume thaiAc;(d;)| < #, in the regiond; € (¢;, T3), for
7 in each iteration. We may also assume tfidt = O(D), alll € E. The total error due to discretization would depend
hence the complexity of the algorithmNnworM-OP-MP is both oné and on.
O(|E|*D).
B. Application to Algorithm BPNAMIGOP-MP

VI. APPROXIMATION SCHEME FORPROBLEM OP-MP The algorithm can be readily used witli(c) instead

In this section, we present an efficient approximatiogf (4). Hence, we should expect a complexity of
scheme for problem OP-MP. Our approximation is ap(|E|Cyax log Cnax), Where Cp.x is the maximal total

adaptation of fully polynomial approximation schemes (FPASbst. Since there is a bound on the minimal probability of
for problem RSP, which are based on dynamic programmiggccessp,,;,, we have

principles. We use algorithm Ywamic-OP-MP and detail
only the needed adjustments. — 108 Puin
First, we switch the roles of cost and delay, i.e., we iterate Crnax = [Tw
over all possible costs instead of delays. Since we have cost
e e . et i resul can be refine, as we must change the ‘s
' ' condition. In the original algorithm, the condition was> D.

to reverse the functions. Next, we use.the m|n|ma_l allowe, equivalent condition would be > C, however theactual
probability of success to bound the maximal cost. Finally, w

iti < .
establish a relation between the granularity of the cost and t?(:t(e)p condrg*on shogld b®(n, v) < D for Somew < V we
: ) denote byC* the discrete cost of the optimal path, i.e.,
error and complexity of computation.

i - —log7(S%(p*
A. Changingc(d) to d(c) o [M]
Recall that we assumed a minimal probability of success

po for each linki, implying a minimal delayt, allocated to it
[where fi(#;) > po]. This means that there israaximalcost,
¢g, for each link, i.e.co = —log(po). Themaximalprobability
of success for a link is bounded by 1, which implies a minim&}. Impact ofr
cost of 0. We will denote the minimal delay, which achieves e now inspect the impact of the cost discretization on
this cost, byZ,. . the error. We denote bp? the discrete path found by the
are monotonic nonincreasing and convex. This implies thS‘FmiIarIy, we denote the optimal solution gy, D}, Cy. We
the cost functions are strictly monotonic, hence the inverggq the notatio for the discrete costs corresponding to the
functiond;(¢;) exists. It also implies that the inverse functlon% timal costs (" — [C;/n]. The relation between the total
are monotonic nonincreasing and convex. Thus, we may apg el . * o

. \ sts on the path is given > LOF =
algorithm DvNAMIC -OP-MP tod,;(¢;). Formally, we define the . P 9 by” -+ [pin = UZIEP !

inverse functiond;(c;) as follows. ner. ) ~ . A
Definition 3: Gi\Ser)l a probability functionf;(d;) € V¥, For each linkl € p, we havenCy .2 Cr hencedlA(Cl) <

define Dy, therefored ;.. di(C7) < D, which means tha§Cy }iep-

di(er): (0, co) — (t, T1) is a legal (n(_)noptlmal) solution. Smcpj is an optlnjial
' ; discrete solution, we must havl, . CF = > 1cpe OF

di(c) = ¢ (du).- henceC™ +[p*[n 2 13 ey O 2 135, CFf = nC. Thus,

We shall denote by, the equivalent of (Section I1-D) for the difference in actual cost between the optimal solution and

costs, i.e., we assume from here on that all céatsco) are the discrete solution is bounded by — C* < |p*|n < [V|n

integer multiples of;. We will later analyze the impact of and, in terms of the corresponding probabilities of success,

on the error and complexity. we getlog(n* /) < |Vn. _

Remark 1: The discretizations of the delay may be re- BY settingn = ¢/|V|, we getlog(r*/r¢) < ¢, and using

garded as aa priori assumption, i.e., the delay demands frofi’ < 1+ 2¢, for small¢, we haver®/z¢ <1+ 2¢ i.e., an

each link cannot be given more accurately. We rchypose ¢-@pproximation. The value of affects the order o,

to increases to improve performance, but then we have t§S Cmax = O(=10g puin/n). We can assume-log pmin =

consider the error due to this discretization. On the other harfd(1): henceCax = O(n~t) = O(|V]/e). Implementing this

the cost discretizatiom is not inherent to the problem andinto the complexity, we geO(|E|Cinax 108 Crmax) =

is always a matter of choice. If the delay discretization is

inherent, thend(¢) must have discrete values both ferand O<|E| 14 log m>

for d(c). This might complicate many of the claims regarding € €

the functiond(c) (for instance, it might not be strictly convex).

In order to avoid such complications, we shall assume that theThus, we have achieved an efficierdpproximation scheme

discretizations is finer than the discretization. Specifically, which is summarized in the following theorem.

The resulting complexity i€)(|E|C* log C*).
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Theorem 3: Algorithm DyNAMIC -OP-MP can be used (with more sophisticated solutions. Indeed, the size and architec-

the above maodifications) to find, within ture of such networks increases the degree of uncertainty,
E||V] v yvhile t_he stricter_service d_emands complicate the impact of
O<— log —) imprecisions. While we believe that our results offer valuable
¢ ¢ insight toward the construction of a proper analysis and design
steps, a patlp¢ that satisfies methodology, it is clear that much is yet to be done and
understood.
—log(Sp(p%)) <l+4e. We are currently working on extending our results to multi-
—logm(Sp(p*)) ~ cast routing. This includes investigating optimal partitions of
end-to-end QoS demands on given multicast trees, as well as
VII. CONCLUSIONS finding optimal trees.
This paper investigated the effects of uncertain parame-
ters on QoS routing with end-to-end delay requirements. We APPENDIX
have defined the routing problem and an important variant; PROOF OF LEMMA 2

optimally partitioned most probable paf©OP-MP). We have (n. u, v) can be viewed as a (monotonic decreasing)

discussed these problems in the context of shortest Pgifiction of. We proceed to show that any two such functions

problems and indicated their difficulties. Crny (0, 1, ), Cm, (n, u, v) have at most a single intersection
We first focused on theoptimal delay partition problem point

(OP). Although problem OP is intractable in the general case,l_e}nma AL:If I = (u, v), f; € ¥ andm,; > my and if for
we established an efficient and exact solution for a wide Classémeno, we haveCy,, (no, u, v) < Cp, (10, u, v), then for
of probability distributions, including exponential and normaéveryn > ng we havlecm (n, u, v) < ém (n, u, v).
distributions. Moreover, a further improvement, in terms of b The assumptlionnl > my irr21plie5n —my <
complexity, was presented for uniform distributions. n — msy. Combining this with the assumptiofi € ¥ implies
Next, we considered problem OP-MP with the above claﬁcl(n —my) < Ac(n —ms), for all n > ng. Hence
of distributions and established a pseudopolynomial solution, -
based on dynamic programming. It is remarkable that changing - . - }
the parameters of each link, from a specific delay with a ‘ Z Aali —my) < ‘ Z Acy(i —ma)
specific probability of success, as in problem RSP, to a ot =rott
complete probability distribution function, as in problem OPimplying
MP, only adds a factor ofog D to the complexity of the
solution. Finally, we established a fully polynomiabptimal
approximation to problem OP-MP. Observe that
Our solutions are applicable to a broader domain than that
of uncertain parameters. Specifically, they apply to any linkm (10, u, v) + (ci(n —m) — ci(no — m))
costs that are a (convex) increasing function of the QoS = (C(m, u) + c(ng — m)) + (a{n — m) — c;(ng — m))
guarantees provided by the link. Such a cost scheme is not _ Clm, u) + er(n — m)
only reasonable, but also useful for resource management, as__ Con(n 10, ) A2)
it allows taking network objectives into consideration. oA T E

Establishing a connection with QoS guarantees requirRdw, by considering the assumptio,,, (no, u, v) <
the invocation of a QoS routing scheme, and, subsequengly, (no, u,v), and adding (1) using (2), we get
a reservation protocol for setting up the flow. The QO8,, (n, u, v) < Cpn, (n, u, v), as required. -
guarantees are usually provided by each link along the pathyye are now ready to prove Lemma 2, which we quote again.
This usually requires to decompose the end-to-end QoS re{ emma 2: If feu,y(d) € W, and there exists any, for
quirements into local (link) requirements. While reservatiognich C™ (ng, u, v) = Cim(no, u, v), thenC™(n, u, v) =
protocols, such as RSVP, provide the mechanisms for S-@r;,(n, u, v) for all n > no.
naling, they do not provide a partition policy. Therefore,  proof. By definition,
the QoS routing problem that we considered, OP-MP, is not
only more solvable than (the more straightforward) MP but, ¢ (n, u, v) = min {C(m_l)(n, u, v), Cp(n, u, v)}
more importantly, seems to be tlatual problem that we — wmin Cu(n, u, v)
should solve. Indeed, our algorithms for solving problem OP- 0<k<m T
MP return bqth the optimal path and the optimal partmo erefore we have, for ald < k < m — 1, Cou(no, u, v) <
of QoS requirements along it. We also solve the optim

< . . (ng, u, v). Hence, by Lemma Al, we have, for all> ng

partition problem, OP, which, as argued above, is relevarit
; ) and for all0 < & < m —1, Cn(n, u, v) < Cr(n, u, v), for
independently of the path selection process. 10<Fk<m—1 Thus. for alln > h

While almost any network control function has to handlg =fk=m - [hus, forafln = no, We have
some degree of uncertainty, traditional approaches, such as ¢ (n, u, v) = min Ci(n, u, v) = Cpn(n, u, v).
dealing with average values, were often enough to circumvent Oshksm
the problem. However, large-scale broadband networks require [ |

a(n—my)—c(ng—my) < (n—ma)—ci(ng—ma). (Al)
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